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Exercice 1. (a) Il suffit de montrer que Ker(I −A) = {0}. Soit donc X ∈ Rn un élément
de Ker(I −A) vu comme vecteur colonne. On a donc (I −A)X = 0, c’est-à-dire X = AX.
On multiplie matriciellement par X t et on utilise l’antisymétrie de A, cela nous donne

X tX = X tAX = −X tAtX = −(AX)tX = −X tX.

Donc X tX = 0, ce qui implique que X est le vecteur nul.

(b) Ce résultat est faux pour les matrices complexes. Un exemple est donné par

A =
(

0 i
−i 0

)
, on vérifie que det(I2 − A) = 0.

Exercice 2. (a) L’application f est injective car si f(x) = 0, alors ∥x∥ = ∥f(x)∥ =
∥0∥ = 0, donc x = 0. Par conséquent Ker(f) = {0}. On conclut que f est surjective car
toute application linéaire d’un espace vectoriel de dimension finie dans lui-même qui est
injective est aussi surjective.

Noter que la condition dim(E) < ∞ est essentielle ici ; le résultat correspondant est
faux pour un endomorphisme d’un espace vectoriel de dimension infinie muni d’un produit
scalaire (ou une norme).

(b) L’affirmation (b) découle du calcul suivant :

⟨f(x), f(y)⟩ = 1
4
(
∥f(x) + f(y)∥2 − ∥f(x) − f(y)∥2)

= 1
4
(
∥f(x + y)∥2 − ∥f(x − y)∥2)

= 1
4
(
∥x + y∥2 − ∥x − y∥2)

= ⟨x, y⟩.

Variante : On peut aussi utiliser une autre formule de polarisation, par exemple

⟨f(x), f(y)⟩ = 1
2
(
∥f(x) − f(y)∥2 − ∥f(x)∥2 − ∥f(y)∥2)

= 1
2
(
∥f(x − y)∥2 − ∥f(x)∥2 − ∥f(y)∥2)

= 1
2
(
∥x − y∥2 − ∥x∥2 − ∥y∥2)

= ⟨x, y⟩.

(c) Le point (c) est élémentaire car si ⟨f(x), f(y)⟩ = ⟨x, y⟩ pour tous x, y ∈ X, alors
en particulier ⟨f(x), f(x)⟩ = ⟨x, x⟩ et donc pour tout x ∈ E on a

∥f(x)∥ =
√

⟨f(x), f(x)⟩ =
√

⟨x, x⟩ = ∥x∥.
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(d) La matrice A de f dans une base orthonormée vérifie AtA = In (on dit que c’est
une matrice orthogonale et on écrit A ∈ O(n)) (ici n = dim(E)).

Pour le voir, on remarque d’abord que si {e1, . . . , en} ⊂ E est une base orthonormée
de E, alors

⟨f(ei), f(ej)⟩ = ⟨ei, ej⟩ = δij.

Mais f(ei) =
∑n

r=1 arier et f(ej) =
∑n

s=1 asjes, par conséquent on a

δij = ⟨ei, ej⟩ = ⟨f(ei), f(ej)⟩ =
n∑

r=1

n∑
s=1

ariasj⟨er, es⟩ =
n∑

s=1

asiasj =
n∑

s=1

at
isasj = (AtA)ij

Exercice 3. (a) Le coefficient (i, j) du produit S = AtA est

sij =
n∑

k=1

at
ikakj =

n∑
k=1

akiakj = a1ia1j + a2ia2j + · · · + anianj,

qui n’est autre que le produit scalaire standard de la ième colonne et la jème colonne de
A. Si la matrice est orthogonale, alors S = In et sij = δij, donc

a1ia1j + a2ia2j + · · · + anianj = δij,

ce qui veut dire que les colonnes de A forment un système orthonormé de vecteurs (et
il s’agit d’une base car ils sont linéairement indépendants puisque A est une matrice
inversible).

(b) On a 1 = det(In) = det(AtA) = det(At) det(A) = det(A)2, donc det(A) = ±1.

(c) Observons d’abord que O(n) ⊂ GL(n,R), car toute matrice orthogonale est inver-
sible. On doit vérifier trois conditions pour prouver que c’est un sous-groupe :

1. O(n) ̸= ∅. C’est clair car In ∈ O(n).
2. A, B ∈ O(n) ⇒ AB ∈ O(n). En effet on a

(AB)tAB = (BtAt)AB = Bt(AtA)B = BtInB = BtB = In.

3. A ∈ O(n) ⇒ A−1 ∈ O(n). En effet, si A ∈ O(n), alors A−1 = At et donc

(A−1)tAt = (At)tAt = AAt = AA−1 = In.

(d) Le déterminant définit un homomorphisme de groupes det : O(n) → {+1, −1}, et
par définition SO(n) est le noyau de cet homomorphisme. C’est donc un sous-groupe.

(e) Si det(A) = det(B) = −1, alors det(AB) = +1, donc O(n) ∩ {A : det(A) = −1}
n’est pas un groupe (ni un sous-groupe de O(n)).
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Exercice 4. a) Faux. Il suffit de considérer une matrice inversible A non orthogonale et
prendre B = A−1.

b) Vrai. En effet on sait que O(n) est un groupe, donc si AB ∈ O(n), alors

A ∈ O(n) ⇔ A−1 ∈ O(n) ⇔ B = A−1(AB) ∈ O(n).

c) Vrai. Le fait que A soit symétrique s’écrit At = A, donc

A ∈ O(n) ⇒ A2 = AtA = In.

d) Faux. Un contre-exemple est A =
(

1 1
0 −1

)
, qui satisfait A2 = I2, mais n’est ni

orthogonale, ni symétrique.

Exercice 5. (a) On trouve une base orthonormée de W en appliquant le procédé de
Gram-Schmidt à la base {w1, w2, w3}. Les calculs nous donnent

u1 = 1√
2

(1, 0, 0, 1), u2 = 1√
2

(0, 1, −1, 0), u3 = 1√
26

(−2, 3, 3, 2)

On peut vérifier d’une part que ces trois vecteurs sont orthonormés et d’autre part qu’ils
appartiennent à W (et donc forment une base de W car dim(W ) = 3).

(b) Pour trouver la distance δ entre

x = (5, 1, 3, −1)

et W on cherche la projection orthogonale x′ = ProjW (x) de x sur W par la formule vue
au cours, on aura alors δ = ∥x′ − x∥. Le point x′ est donné par

x′ = ⟨u1, x⟩u1 + ⟨u2, x⟩u2 + ⟨u3, x⟩u3 = 4√
2

u1 − 2√
2

u2 + 0 · u3

= (2, −1, 1, 2).

on a donc
x − x′ = (3, 2, 2, −3) .

A ce stade, il peut être utile de vérifier que x′ appartient à W et que le vecteur (x − x′)
est orthogonal à wi pour i = 1, 2, 3. Nous laissons le soin de la vérification au lecteur.

Finalement, la distance cherchée est

δ = ∥x′ − x∥ =
√

32 + 22 + 22 + (−3)2 =
√

26.
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(c) La base la plus simple de l’espace vectoriel S2 ⊂ M2(R) est sans doute donnée par

S1 =
(

1 0
0 0

)
, S2 =

(
0 0
0 1

)
, S3 =

(
0 1
1 0

)
.

Or
Tr(St

1S2) = Tr(St
1S3) = Tr(St

2S3) = 0
donc on a de la chance notre base est déjà orthogonale (on n’aura donc pas besoin de
Gram-Schmidt). De plus

Tr(St
1S1) = Tr(St

2S2) = 1, Tr(St
3S3) = 2

Une base orthonormée de S2 est alors donnée par(
1 0
0 0

)
,

(
0 0
0 1

)
,

1√
2

(
0 1
1 0

)
.

Exercice 6. (a) Si m et n sont deux entiers distincts, on a∫ π

−π

cos(mx) cos(nx)dx =
∫ π

−π

1
2

(
cos

(
(m + n)x

)
+ cos

(
(m − n)x

))
dx = 0,

car pour tout entier k non nul on a
∫ π

−π
cos(kx)dx = 0. On a donc prouvé que

m, n ∈ Z distincts et m ̸= −n =⇒ ⟨cos mx, cos nx⟩ = 0.

(b) Pour montrer que
∫ π

−π
cos2(mx)dx vaut π, voici deux manières de le vérifier :

1. On utilise l’identité cos2(mx) = 1
2(1 + cos(2mx)) :∫ π

−π

cos(mx)2dx = 1
2

∫ π

−π

((1 + cos(2mx)))dx = 1
2

[
x + 1

2m
sin(2mx)

]π

x=−π

= π.

2. On évite tout calcul en observant que (par périodicité)∫ π

−π

cos2(mx)dx =
∫ π

−π

sin2(mx)dx = 1
2

∫ π

−π

(cos2(mx)+sin2(mx))dx = 1
2

∫ π

−π

1 dx = π.

On a donc

∥ cos(mx)∥ =

√
1
π

∫ π

−π

cos(mx)2dx = 1.

La famille {cos x, cos 2x, . . . , cos nx} est donc orthonormée et non seulement orthogonale.

(c) Si m = ±n, alors ∥ cos(mx) − cos(mx)∥ = 0. Sinon, alors cos(mx) et cos(nx) sont
orthogonaux et par le théorème de Pythagore, on a

∥ cos(mx) − cos(nx)∥ =
√

∥ cos(mx)∥2 + ∥ cos(nx)∥2 =
√

1 + 1 =
√

2.
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Exercice 7. (a) Par un calcul direct on trouve que

⟨xm, xn⟩ =
∫ 1

−1
xm+ndx =

{
2

m+n+1 si m + n est pair,
0 si m + n est impair.

Et

∥xk∥ =
√

⟨xk, xk⟩ =
(∫ 1

−1
x2kdx

)1/2

=
√

2
2k + 1 .

On a

P0(x) = 1√
2 P3(x) =

√
7
8(5x3 − 3x)

P1(x) =
√

3
2 x P4(x) = 3

√
2

16 (35x4 − 30x2 + 3)

P2(x) =
√

5
8 (3x2 − 1) P5(x) = 11

128(63x5 − 70x3 + 15x)

P6(x) =
√

26
32 (231 x6 − 315 x4 + 105 x2 − 5)

Voici les calculs :

• Le premier polynôme de Legendre s’obtient en normalisant la fonction constante
Q0(x) = 1. On a donc P0(x) = 1√

2 .

• Pour le deuxième polynôme de Legendre, on remarque d’abord que

⟨x, P0(x)⟩ = 1√
2

∫ 1

−1
xdx = 0,

et
⟨x, x⟩ =

∫ 1

−1
x2dx = 2

3 .

Donc
P1(x) = x√

⟨x, x⟩
=

√
3
2 x

• Pour le troisième polynôme de Legendre, on calcule d’abord les produits scalaires

⟨P0(x), x2⟩ = 1√
2

∫ 1

−1
x2dx = 2

3
√

2
=

√
2

3 et ⟨P1(x), x2⟩ =
√

3
2

∫ 1

−1
x3dx = 0.

Donc P2(x) s’obtient en calculant d’abord
Q2(x) = x2 − ⟨P0(x), x2⟩P0(x) − ⟨P1(x), x2⟩P1(x) = x2 − ⟨P0(x), x2⟩P0(x)

= x2 − 2
3
√

2
P0 = x2 − 1

3 .

5



EPFL - Printemps 2025
Algèbre linéaire avancée II Section de Physique
Solution 10

Alexis Michelat
Exercices

1er mai 2025

On a alors
∥Q2∥2 =

∫ 1

−1

(
x2 − 1

3

)2

dx = 8
45 ,

et donc
P2 = Q2(x)

∥Q2∥
=

√
45
8

(
x2 − 1

3

)
=

√
5
8
(
3x2 − 1

)
.

• Pour le quatrième polynôme de Legendre, on calcule d’abord

⟨P0(x), x3⟩ = 0, ⟨P1(x), x3⟩ =
√

3
2

∫ 1

−1
x4dx =

√
3
2

2
5 =

√
6

5 et ⟨P2(x), x3⟩ = 0,

Donc P3(x) s’obtient en normalisant

Q3(x) = x3 −
√

6
5 P1(x) = x3 −

√
6

5

√
3
2 x = x3 − 3

5x ⇒ P3 = Q3(x)
∥Q3∥

=
√

7
8 (5x3 −3x).

Ensuite les calculs se compliquent...

Remarques 1. La définition usuelle des polynômes de Legendre est un peu différente,
on remplace la condition d’orthonormalité par

⟨Pn, Pm⟩ = 2
2n + 1δm,n,

cela modifie chaque polynôme par une constante multiplicative.

2. Les polynômes de Legendre sont solutions de l’équation différentielle suivante :

(1 − x2) d2

dx2 Pn(x) − 2x
d

dx
Pn(x) + n(n + 1)Pn(x) = 0.

Cette équation apparaît notamment dans l’étude de l’équation de Schrödinger à potentiel
sphérique, ce qui justifie l’importance des polynômes de Legendre.

Exercice 8. (a) La structure d’espace vectoriel sur S se définit de façon évidente : Si
x = {xn}n∈N et y = {yn}n∈N, alors x + y = (xn + yn) et λx = {λxn} pour tout λ ∈ K.
La vérification des 8 axiomes de la définition d’un espace vectoriel se fait coordonnée par
coordonnée (on peut aussi remarquer que S n’est rien d’autre que l’espace vectoriel de
toutes les fonctions de N vers K).

(b) La suite nulle 0 appartient à S0 car on peut prendre m = 0 dans la définition. Si
x = {xn}n∈N et y = {yn}n∈N sont de support fini (respectivement m1 et m2), alors
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λx + y = {λxn + yn}n∈N est de support fini (au plus égal à max {m1, m2}). Ainsi
S0 ⊂ S est non-vide et fermé pour les combinaisons linéaires, c’est donc un sous-espace
vectoriel.

(c) Voici comment il ne faut pas définir ce qu’est une base : Une base de l’espace
vectoriel V est une liste de vecteurs {v1, . . . , vn} qui est libre et qui engendre V . Une telle
définition convient uniquement dans le cas d’un espace vectoriel de dimension finie.

La définition correcte s’énonce ainsi : Une base de l’espace vectoriel V est un sous-
ensemble B de V qui est libre et qui engendre V . Dire que B est libre signifie que pour
toute famille de vecteurs {v1, . . . , vn} ⊂ B qui sont deux-à-deux distincts, si λ1v1 + · · · +
λnvn = 0 alors λ1 = λ2 = · · · = λn = 0. Et dire que B engendre V signifie que pour tout
x ∈ V il existe {w1, . . . , wm} ⊂ B et {λ1, . . . , λm} ⊂ K tels que x = λ1w1 + · · · + λmwm.

On peut aussi dire que B ⊂ V est une base si et seulement si tout vecteur de V s’écrit
de façon unique comme combinaisons linéaires d’éléments de B (i.e. il existe un unique
sous-ensemble {w1, . . . , wm} ⊂ B et {λ1, . . . , λm} ⊂ K unique tels que x = λ1w1 + · · · +
λmwm.)

Dans cette définition, B peut -être infini, éventuellement non dénombrable, mais il est
important de noter qu’on ne fait référence qu’à des combinaisons linéaires finies d’éléments
de B.

Une base dénombrable de S0 est donné par E = {e1, e2, e3, . . . }, où ej ∈ S0 est la
suite qui vaut 1 pour l’indice j et 0 pour tous les autres indices :

ej = (0, 0, . . . , 0, 1, 0, . . . ).

On peut considérer que E est la base canonique de S0.

(d) L’application

β : S × S0 → K, β(x, y) =
∞∑

n=0

xnyn

est bien définie car on ne doit considérer comme deuxième argument y que des éléments
de S0. Donc il existe un entier m tel que yn = 0 si n > m et on a donc

β(x, y) =
m∑

n=0

xnyn.

C’est une somme finie et en particulier nous n’avons pas à nous préoccuper de question de
convergence ou du sens à donner à cette somme. La bilinéarité se vérifie de façon usuelle.

(e) La notion d’accouplement non-dégénéré est formulée dans la Définition 10.2.3 p.
35 du polycopié. Il y a deux conditions à vérifier.
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Pour la première condition, on se donne un élément quelconque x ∈ S et on suppose
que pour tout y ∈ S0 on a β(x, y) = 0. Alors on doit prouver que dans ce cas x = 0.
Mais il est clair que si x ∈ S , alors β(x, en) = xn. Donc on a xn = 0 pour tout n ∈ N,
c’est-à-dire x = 0 ∈ S .

Pour la deuxième condition, on se donne y ∈ S0 quelconque et on suppose que pour
tout x ∈ S on a β(x, y) = 0 ; et on doit prouver que cela implique que y = 0. Mais
l’argument est le même : on a 0 = β(en, y) = yn pour tout n, donc y = 0.

(f) Supposons que le corps K contient q éléments et notons pour tout entier m ∈ N

Sm = S ∩ {x : yn = 0 ∀n > m}.

Alors Sm est un ensemble fini (il contient qm éléments) et par définition S0 = ∪m∈NSm.
Ceci montre que S0 est une réunion dénombrable d’ensembles finis ; c’est donc un en-
semble dénombrable.

Par contre S n’est pas dénombrable. Si K = F2, on remarque que l’écriture binaire
montre que S = {0, 1}N a le même cardinal que R. De manière équivalente on peut
construire une bijection entre l’ensemble (non dénombrable) P(N) des parties de N et
un sous-ensemble de S de la façon suivante. À tout sous-ensemble (fini ou pas) A ⊂ N
on associe la suite ξA = {xn}n∈N définie par xn = 1 si n ∈ A et xn = 0 si n ̸∈ A. C’est une
injection, ce qui suffit à montrer que card(R) = card(P(N)) ≤ card(S ), et l’inégalité
inverse est facile à démontrer (mais pas nécessaire, car on sait qu’on a pour tout ensemble
non-vide E l’inégalité stricte card(P(E)) > card(E) (de manière équivalente, on peut
utiliser l’argument diagonal de Cantor pour montrer que card(N) < card(R)).

(g) Par le point (e) et le Corollaire 10.2.4, on sait qu’il existe une application linéaire
injective βg : S → S ′

0. En particulier l’ensemble S ∗
0 n’est pas dénombrable (puisqu’il

contient un sous-ensemble non dénombrable) et donc il n’existe aucune bijection entre
S ∗

0 et S0.

(h) Si S admettait une base dénombrable, alors on pourrait construire un isomor-
phisme entre S et S0, or on a vu qu’il n’y a pas de bijection entre ces deux ensembles.

Remarque 1. On a donc montré avec cet exercice que lorsque le corps K est fini, l’espace
vectoriel S0 n’est pas isomorphe à son dual et S n’admet pas de base dénombrable. Ces deux
propriétés sont vraies pour tout corps K (fini on infini), mais la preuve dans le cas d’un corps
infini est plus subtile (ce résultat est parfois appelé le théorème d’Erdős-Kaplansky.)
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