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Solution 10 ler mai 2025

Exercice 1. (a) Il suffit de montrer que Ker(I — A) = {0}. Soit donc X € R" un élément
de Ker(I — A) vu comme vecteur colonne. On a donc (I —A)X = 0, c’est-a-dire X = AX.
On multiplie matriciellement par X et on utilise 'antisymétrie de A, cela nous donne

X'X = X'AX = - X'A'X = —-(AX)'X = - X"X.
Donc X!X = 0, ce qui implique que X est le vecteur nul.

(b) Ce résultat est faux pour les matrices complexes. Un exemple est donné par

A= ( 0 >, on vérifie que det(I — A) = 0.

—1 0
Exercice 2. (a) L’application f est injective car si f(z) = 0, alors ||z|| = || f(z)| =
|0]| = 0, donc x = 0. Par conséquent Ker(f) = {0}. On conclut que f est surjective car

toute application linéaire d’un espace vectoriel de dimension finie dans lui-méme qui est
injective est aussi surjective.

Noter que la condition dim(F) < co est essentielle ici; le résultat correspondant est
faux pour un endomorphisme d’un espace vectoriel de dimension infinie muni d’un produit
scalaire (ou une norme).

(b) L’affirmation (b) découle du calcul suivant :
(f(@) f() == (If @)+ fOI* = 1f (@) = FW)II)
(L @+ ) I* = £ (= = »)I)

(Il +yll* = llz = y1I*)

e Bl e

—~
8
<

=

Variante : On peut aussi utiliser une autre formule de polarisation, par exemple

(@) ) = £ (1) = FIE = @I = 1)
=5 (I = I = 1@~ 1))

1
=5 (lz =yl” = ll=l* = ll[*)

= (z,9).

(c) Le point (c) est élémentaire car si (f(x), f(y)) = (x,y) pour tous z,y € X, alors
en particulier (f(x), f(z)) = (z,x) et donc pour tout z € E on a

1f (@) = V() f(2)) = vz, 2) = ]|



EPFL - Printemps 2025 Alexis Michelat
Algebre linéaire avancée II Section de Physique Exercices
Solution 10 ler mai 2025

(d) La matrice A de f dans une base orthonormée vérifie A’A =1, (on dit que c’est
une matrice orthogonale et on écrit A € O(n)) (ici n = dim(FE)).

Pour le voir, on remarque d’abord que si {ey,...,e,} C E est une base orthonormée
de E, alors

(f(es), f(ej)> = <€i7€j> = 0jj-
Mais f(e;) =Y n_, arer et f(e;) = o | asjes, par conséquent on a

0ij = (eies) = (flen), f(e) = DD anagiler,es) = Y asag =Y alay; = (A'A)y
s=1 s=1

r=1 s=1

Exercice 3. (a) Le coefficient (7, 7) du produit S = A*A est

n n
t
Sij = E :aikakj = E QkiQk; = Q1015 + A2A25 + * + + + ApiQnj,
k=1 k=1

-&me ‘eme

qui n’est autre que le produit scalaire standard de la ™ colonne et la ¢ colonne de
A. Si la matrice est orthogonale, alors S =1, et s;; = d;;, donc
a13a15 + Agilj + ++ + Apin; = 04,

ce qui veut dire que les colonnes de A forment un systéme orthonormé de vecteurs (et
il s’agit d’une base car ils sont linéairement indépendants puisque A est une matrice
inversible).

(b) On a 1 = det(I,) = det(A*A) = det(A?) det(A) = det(A)?, donc det(A) = +1.

(¢) Observons d’abord que O(n) C GL(n,R), car toute matrice orthogonale est inver-
sible. On doit vérifier trois conditions pour prouver que c’est un sous-groupe :

1. O(n) # 0. Cest clair car I,, € O(n).
2. A,Be€O(n)= AB € O(n). En effet on a

(AB)'AB = (B'AYAB = BY(A'A)B = B'l,B = B'B —1,.
3. A€ O(n) = A7 € O(n). En effet, si A € O(n), alors A~! = A" et donc
(A1) A" = (A A" = AA' = AAT =1,

(d) Le déterminant définit un homomorphisme de groupes det : O(n) — {+1, —1}, et
par définition SO(n) est le noyau de cet homomorphisme. C’est donc un sous-groupe.

(e) Si det(A) = det(B) = —1, alors det(AB) = +1, donc O(n) N {A : det(A) = —1}
n’est pas un groupe (ni un sous-groupe de O(n)).
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Exercice 4. a) Faux. Il suffit de considérer une matrice inversible A non orthogonale et
prendre B = A~1,

b) Vrai. En effet on sait que O(n) est un groupe, donc si AB € O(n), alors

AeO(n)e A1 eO(n) & B=A"(AB) € O(n).

¢) Vrai. Le fait que A soit symétrique s’écrit A* = A, donc

A€0(n) = A2 = A'A =1,.

1

d) Faux. Un contre-exemple est A = ( 0

1 . o . .
3 ) , qui satisfait A? = I,, mais n’est ni

orthogonale, ni symétrique.

Exercice 5. (a) On trouve une base orthonormée de W en appliquant le procédé de
Gram-Schmidt a la base {wy, wq, w3}. Les calculs nous donnent

1 1 1
u; = —(1,0,0,1), uy = —=(0,1,-1,0), uz=——=(—2,3,3,2)
V2 V2 V26

On peut vérifier d'une part que ces trois vecteurs sont orthonormés et d’autre part qu’ils
appartiennent & W (et donc forment une base de W car dim(W) = 3).

(b) Pour trouver la distance § entre
v =(51,3,—1)

et W on cherche la projection orthogonale ' = Projy, (z) de z sur W par la formule vue
au cours, on aura alors 6 = ||z’ — z||. Le point 2’ est donné par

4
V2

/

= (ug,z)us + (ug, x)ug + (ug, xyug = Uy ugy + 0-us

2
V2
= (2,—-1,1,2).
on a donc
r—12 = (3,2,2,-3).

A ce stade, il peut étre utile de vérifier que 2’ appartient a W et que le vecteur (z — ')
est orthogonal a w; pour ¢ = 1,2, 3. Nous laissons le soin de la vérification au lecteur.

Finalement, la distance cherchée est

0= ||a" — || = /32 + 22 4 22 + (—3)2 = V/26.
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(c) La base la plus simple de I'espace vectoriel So C My(R) est sans doute donnée par

10 0 0 0 1
(o) w=(ov) s=(10)

Tr(S1S;) = Tr(S1S;) = Tr(S5S5) = 0
donc on a de la chance notre base est déja orthogonale (on n’aura donc pas besoin de
Gram-Schmidt). De plus

TI‘(S;Sl) = TI'(S;SQ) = 1, TF<S§S3) =2

Une base orthonormée de Sy est alors donnée par
10 0 0 1 /01
00/’ 01/ aa\10)"
Exercice 6. (a) Si m et n sont deux entiers distincts, on a

/7r cos(mx) cos(nx)dr = /Tr 1(cos ((m+ n)z) + cos ((m — n)x))dx =0,

- - 2

Or

car pour tout entier £ non nul on a f:r cos(kx)dz = 0. On a donc prouvé que

m,n € Z distincts et m # —n = (cosmx, cosnx) = 0.
(b) Pour montrer que [”_cos?*(max)dz vaut , voici deux maniéres de le vérifier :

1
1. On utilise l'identité cos?(mx) = 5(1 + cos(2mx)) :

/ " cos(ma)2dz = % / " (1 + cos(2ma)))dz — [x + QL sin(2mx)r -

—T —Tr 2 m rT=—T

2. On évite tout calcul en observant que (par périodicité)

/ cos®(max)dr = / sin®(maz)dz = 5/ (cos?(mx)+sin®(mz))dw = 5/ ldx = 7.

On a donc
1 ™
|| cos(max)|| = —/ cos(mx)?dx = 1.
™ —Tr
La famille {cos z, cos 2z, ..., cosnx} est donc orthonormée et non seulement orthogonale.
(c) Sim = +£n, alors || cos(mx) — cos(ma)|| = 0. Sinon, alors cos(mx) et cos(nx) sont

orthogonaux et par le théoreme de Pythagore, on a

| cos(ma) — cos(nz)|| = /|| cos(ma)||2 + || cos(nz)||2 = VI + 1 = V2.
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Exercice 7. (a) Par un calcul direct on trouve que

—=— s1m -+ n est pair
<xm’ xn) _ / Qfm+nd.fﬁ — ) m4n+l1 ' ' ’ .
-1 0 si m 4+ n est impair.

Et
1 1/2 2
HwkH =/ (ak, ak) = (/_1 x%dx) = TR

On a

Pyz) = & Py(w) = /1(50° — 30)

Pi(z) = ﬁ z Py(z) = 22 (3501 — 302% + 3)

Py(z) = \/§ (322 — 1) | Py(z) = AL (632° — T02° + 152)

Ps(z) = ¥2° (23125 — 3152* + 10522 — 5)

Voici les calculs :

e Le premier polynéome de Legendre s’obtient en normalisant la fonction constante
Qo(r) = 1. On a donc Py(z) = \/Li

e Pour le deuxieme polynome de Legendre, on remarque d’abord que

(x, Py(x \/_/ xdx =0,

1
2

= 2 = —
<:B,3:)—/_xdx 3

Pl(l’) =

et

—_

Donc

z \/§
=1\/=z
V(@) 2
e Pour le troisieme polynéme de Legendre on calcule d’abord les produits scalaires

(Py(x f/ Py = = \f ot (Pl(x),x2>—\/g/_llx3dx—0.

Donc P,(z) s’obtient en calculant d abord

Qs(z) = 2% — (Py(x), 2%) Po(x) — (Pi(x),2?) Pi(x) = 2* — (Py(x), 2*) Py ()

(@4
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On a alors

! 1\? 8
Q,|% = 2 1 _
€221 /_1 (x 3) de 45’

_Q2(x)_ 4_5 2_1 . § 2
Pl =yE (P og) =R e

et donc

e Pour le quatrieme polynome de Legendre, on calcule d’abord

(Po(x),2%) =0, (Pi(2),2°) = \/g/_1£€4dic = \/gé = \/?6 et (Py(x),2°) =0,

Donc Ps(z) s’obtient en normalisant

Q3(x):x3—\/?ép1($):x3—§ ;x:$3—§l’ = P3:ﬁz;j|): g(5:1:3—3x).

Ensuite les calculs se compliquent...

Remarques 1. La définition usuelle des polynémes de Legendre est un peu différente,
on remplace la condition d’orthonormalité par

2

<PnaPm> = —5mna
2n+1

cela modifie chaque polyndéme par une constante multiplicative.

2. Les polynomes de Legendre sont solutions de I’équation différentielle suivante :

(1— $2)dd—;2pn(l‘) — 2:1:%]3”@) +n(n+1)P,(x) = 0.

Cette équation apparait notamment dans I’étude de I’équation de Schrodinger a potentiel
sphérique, ce qui justifie 'importance des polyndémes de Legendre.

Exercice 8. (a) La structure d’espace vectoriel sur . se définit de fagon évidente : Si
T ={Tn}en 6 Y = {Un}pen, alors  +y = (2, + yn) et Az = {Az,} pour tout A € K.
La vérification des 8 axiomes de la définition d’un espace vectoriel se fait coordonnée par
coordonnée (on peut aussi remarquer que . n’est rien d’autre que 'espace vectoriel de
toutes les fonctions de N vers K).

(b) La suite nulle 0 appartient a .% car on peut prendre m = 0 dans la définition. Si
T ={Tn},ey € ¥ = {Un}, ey sont de support fini (respectivement m, et my), alors

6
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Ax 4y = {AZp + Yn}, ey est de support fini (au plus égal a max {my, ms}). Ainsi
Sy C 7 est non-vide et fermé pour les combinaisons linéaires, c¢’est donc un sous-espace
vectoriel.

(c) Voici comment il ne faut pas définir ce qu’est une base : Une base de l’espace
vectoriel V' est une liste de vecteurs {vy,...,v,} qui est libre et qui engendre V. Une telle
définition convient uniquement dans le cas d’un espace vectoriel de dimension finie.

La définition correcte s’énonce ainsi : Une base de 'espace vectoriel V' est un sous-
ensemble B de V qui est libre et qui engendre V. Dire que B est [ibre signifie que pour
toute famille de vecteurs {vy,...,v,} C B qui sont deux-a-deux distincts, si \jv; + -+ +
AU, = 0 alors Ay = Ay = --- =\, = 0. Et dire que B engendre V signifie que pour tout
x € Vil existe {wy,...,wn} C Bet{A,..., \n} CKtels que z = A\jwy + -+ - + Ay,

On peut aussi dire que B C V est une base si et seulement si tout vecteur de V' s’écrit
de fagon unique comme combinaisons linéaires d’éléments de B (i.e. il existe un unique
sous-ensemble {wy, ..., w,} C B et {\,...,\,} C K unique tels que = A\jw; + -+ +
Am W)

Dans cette définition, B peut -étre infini, éventuellement non dénombrable, mais il est
important de noter qu’on ne fait référence qu’a des combinaisons linéaires finies d’éléments

de B.

Une base dénombrable de % est donné par & = {e1, ez, €3,...}, oll e € S est la
suite qui vaut 1 pour l'indice j et 0 pour tous les autres indices :

e; =(0,0,...,0,1,0,...).
On peut considérer que & est la base canonique de ..

(d) L’application
B:S xS =K, Blay) = Ty
n=0

est bien définie car on ne doit considérer comme deuxiéme argument y que des éléments
de .#,. Donc il existe un entier m tel que y,, = 0 si n > m et on a donc

Bla,y) =D Ty
n=0

C’est une somme finie et en particulier nous n’avons pas a nous préoccuper de question de
convergence ou du sens a donner a cette somme. La bilinéarité se vérifie de fagon usuelle.

(e) La notion d’accouplement non-dégénéré est formulée dans la Définition 10.2.3 p.
35 du polycopié. 1l y a deux conditions a vérifier.

7
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Pour la premiere condition, on se donne un élément quelconque x € .¥ et on suppose
que pour tout y € % on a [(z,y) = 0. Alors on doit prouver que dans ce cas x = 0.
Mais il est clair que si x € ., alors §(z,e,) = x,. Donc on a z,, = 0 pour tout n € N,
c’est-a-dire z = 0 € ..

Pour la deuxiéme condition, on se donne y € % quelconque et on suppose que pour
tout z € . on a f(x,y) = 0; et on doit prouver que cela implique que y = 0. Mais
I'argument est le méme : on a 0 = f(e,, y) = y, pour tout n, donc y = 0.

(f) Supposons que le corps K contient ¢ éléments et notons pour tout entier m € N
S =S N{x:y, =0Vn>m}.

Alors ., est un ensemble fini (il contient ¢ éléments) et par définition . = Upen-m.
Ceci montre que %, est une réunion dénombrable d’ensembles finis; c’est donc un en-
semble dénombrable.

Par contre . n’est pas dénombrable. Si K = 5, on remarque que I’écriture binaire
montre que . = {0, 1}N a le méme cardinal que R. De maniere équivalente on peut
construire une bijection entre ’ensemble (non dénombrable) &?(N) des parties de N et
un sous-ensemble de . de la facon suivante. A tout sous-ensemble (fini ou pas) A ¢ N
on associe la suite {4 = {@,,},,cy définie par z,, = 1sin € Aet z, =0sin g A. C’est une
injection, ce qui suffit & montrer que card(R) = card(Z(N)) < card(.), et I'inégalité
inverse est facile & démontrer (mais pas nécessaire, car on sait qu’on a pour tout ensemble
non-vide F l'inégalité stricte card(Z(F)) > card(E) (de maniére équivalente, on peut
utiliser I'argument diagonal de Cantor pour montrer que card(N) < card(R)).

(g) Par le point (e) et le Corollaire 10.2.4, on sait qu'il existe une application linéaire
injective f, : ¥ — 7. En particulier 'ensemble .7 n’est pas dénombrable (puisqu’il
contient un sous-ensemble non dénombrable) et donc il n’existe aucune bijection entre

y[)* et ,5”0.

(h) Si .7 admettait une base dénombrable, alors on pourrait construire un isomor-
phisme entre .% et .%, or on a vu qu’il n’y a pas de bijection entre ces deux ensembles.

Remarque 1. On a donc montré avec cet exercice que lorsque le corps K est fini, ’espace
vectoriel .#) n’est pas isomorphe a son dual et . n’admet pas de base dénombrable. Ces deux
propriétés sont vraies pour tout corps K (fini on infini), mais la preuve dans le cas d’un corps
infini est plus subtile (ce résultat est parfois appelé le théoreme d’Erdés-Kaplansky.)



